- Joined
- Jun 27, 2021
- Messages
- 5,386
- Reaction score
- 422
Solve 5^(x + 1) + 10^(x - 1) = 15^(2x - 1)
Solving Exponential Equations:
Step 1: Express both sides in terms of the same base.
Step 2: Equate the exponents.
Step 3: Solve the resulting equation.
Solve. ...
or
Step 1: Isolate the exponential and then apply the logarithm to both sides.
or
sometimes have to use calculator
5^(x + 1) + 10^(x - 1) = 15^(2x - 1)
5^(x + 1) =5*5^x
10^(x - 1)=(5^x*2^x)/10
15^(2x - 1)=15^(2x)/ 15 =(3^(2x)*5^(2x))/15
5*5^x +(5^x*2^x)/10=(3^(2x)*5^(2x))/15 ...........simplify
2 *45^x = 3 (2^x + 50)..........use calculator and you get
x≈1.14557
![]()