oblique Cartesian coordinates under rotation

Discussion in 'Scientific Statistics Math' started by Gordon Moyer, Jun 29, 2004.

  1. Gordon Moyer

    Gordon Moyer Guest

    Can anyone supply me with the direct and inverse transformation
    equations for an OBLIQUE Cartesian coordinate system under rotation
    about a fixed origin? I'm familiar with the equations for rotational
    transformation of rectangular Cartesian coordinates, but what do the
    equations look like when the coordinate axes ARE NOT at a right angle?
    Gordon Moyer, Jun 29, 2004
    1. Advertisements

  2. Soit B = (b1,b2,...,bn) la matrice composée par les vecteurs de base
    du système oblique en forme de colonne exprimés par des coordonnées
    d'un système cartésien, et R la matrice de rotation par rapport au
    système cartésien, alors la matrice R' qui exprime la rotation dans
    les coordonnées obliques est

    R' = B^(-1) * R * B
    Horst Kraemer, Jun 29, 2004
    1. Advertisements

Ask a Question

Want to reply to this thread or ask your own question?

You'll need to choose a username for the site, which only take a couple of moments (here). After that, you can post your question and our members will help you out.