Power of a Complex Number...2

Joined
Jun 27, 2021
Messages
5,386
Reaction score
422
Section 6.6

Screenshot_20220225-174727_Samsung Notes.jpg


IMG_20220226_185626.jpg


IMG_20220226_185639.jpg


IMG_20220226_185652.jpg
 
MSP856811c31e112f3h257h00004h56b1dhfdbf8hc7


Apply binomial theorem:
MSP45331h133f6h605hii0h0000685bb8ih2b81g98i
where \(a=3\), \(b=-2i\)

MSP371223cef0cc9c4e0080000394f352958500571



substitute a and b, and expand

= \(8!/(0!(8-0)!)*3^8(-2i)^0+8!/(1!(8-1)!)3^7*(-2i)^1+8!/(2!(8-2)!)3^6(-2i)^2\)
\(+8!/(3!(8-3)!)*3^5*(-2i)^3+8!/(4!(8-4)!)*3^4*(-2i)^4+8!/(5!(8-5)!)*3^3*(-2i)^5\)
\(+8!/(6!(8-6)!)*3^2*(-2i)^6+ 8!/(7!(8-7)!)*3*(-2i)^7+ 8!/(8!(8-8)!)*3^0*(-2i)^8\)

=\(6561-34992i-81648+108864i+90720-48384i-16128+3072i+256\)

= \(-239+2856*i \)
 
MSP856811c31e112f3h257h00004h56b1dhfdbf8hc7


Apply binomial theorem:
MSP45331h133f6h605hii0h0000685bb8ih2b81g98i
where \(a=3\), \(b=-2i\)

MSP371223cef0cc9c4e0080000394f352958500571



substitute a and b, and expand

= \(8!/(0!(8-0)!)*3^8(-2i)^0+8!/(1!(8-1)!)3^7*(-2i)^1+8!/(2!(8-2)!)3^6(-2i)^2\)
\(+8!/(3!(8-3)!)*3^5*(-2i)^3+8!/(4!(8-4)!)*3^4*(-2i)^4+8!/(5!(8-5)!)*3^3*(-2i)^5\)
\(+8!/(6!(8-6)!)*3^2*(-2i)^6+ 8!/(7!(8-7)!)*3*(-2i)^7+ 8!/(8!(8-8)!)*3^0*(-2i)^8\)

=\(6561-34992i-81648+108864i+90720-48384i-16128+3072i+256\)

= \(-239+2856*i \)

There comes a time when a student must admit defeat. I give up!

Power of a Complex Number...1
 

Members online

No members online now.

Trending content

Forum statistics

Threads
2,527
Messages
9,856
Members
696
Latest member
fairdistribution
Back
Top