# Triangle ABC

Discussion in 'Other Pre-University Math' started by nycmathguy, Jul 17, 2021.

1. ### nycmathguy

Joined:
Jun 27, 2021
Messages:
5,386
422
Set 1.4
Question 26

See attachment.

Work out (a) through (d). nycmathguy, Jul 17, 2021
2. ### MathLover1

Joined:
Jun 27, 2021
Messages:
2,989
2,884
a)

A=(1,1)
B=(9,3)
C=(3,5)

the lenth of sides:
AB=sqrt((9-1)^2+(3-1)^2)=sqrt(8^2+2^2)=2sqrt(17)
AC=sqrt((3-1)^2+(5-1)^2)=sqrt(2^2+4^2)=2sqrt(5)
BC=sqrt((3-9)^2+(5-3)^2)=sqrt((-6)^2+2^2)=2sqrt(10)

perimeter=2sqrt(17)+2sqrt(5)+2sqrt(10)

perimeter=2(sqrt(17)+sqrt(5)+sqrt(10))

approximately, perimeter=19.04

b)

triangle formed by joining midpoints of the three sides

A=(1,1)
B=(9,3)
C=(3,5)

midpoint AB is ((1+9)/2,(1+3)/2)=(10/2,2)=(5,2)...... => A'=(5,2)
midpoint AC is ((1+3)/2,(1+5)/2)=(2,3)..........................=> B'=(2,3)
midpoint BC is ((9+3)/2,(3+5)/2)=(6,4)..........................=> C'=(6,4)

the length of sides:
A’B'=sqrt((2-5)^2+(3-2)^2)=3.16
A’C'=sqrt((6-5)^2+(4-2)^2)=2.24
B’C'=sqrt((6-2)^2+(4-3)^2)=4.12

perimeter=3.16+2.24+4.12
perimeter=9.52

c)

ratio of the perimeter in part (a) to the perimeter in part (b)

perimeter(a)/perimeter(b)=19.04/9.52=2

d)
The Midsegment Theorem

The Midsegment Theorem states that the midsegment connecting the midpoints of two sides of a triangle is parallel to the third side of the triangle, and the length of this midsegment is half the length of the third side.

MathLover1, Jul 18, 2021
nycmathguy likes this.
3. Joined:
Jun 27, 2021
Messages:
5,386