- Joined
- Jun 27, 2021
- Messages
- 5,386
- Reaction score
- 422
Can you show me how to do 14 and 16?
14.
r^2=1/(3+cos^2(theta))
r^2=x^2+y^2
x=r *cos(θ) =>cos(θ) =x/r =>cos(θ) =x/sqrt(x^2+y^2), then cos^2(θ) =x^2/(x^2+y^2)
y=r*sin(θ)=>sin(θ)=y/r
substitute in given formula
x^2+y^2=1/(3+x^2/(x^2+y^2))
(x^2+y^2) (3+x^2/(x^2+y^2))=1
3x^2+3y^2+x^2=1
4x^2+3y^2=1
16.
r*sin(theta+pi/4)=6
r=sqrt(x^2+y^2)
y=rsin(θ)=>sin(θ)=y/r
Apply the formula sin(α+β)=cos(α)sin(β)+sin(α)cos(β) with α=θ and β=π /4
sin(π /4)=1/sqrt(2)=sqrt(2)/2
cos(π /4)=sqrt(2)/2
sin(θ +π /4)
=cos(θ)(sqrt(2)/2)+sin(θ)(sqrt(2)/2)
=(sqrt(2)cos(θ)/2+sqrt(2)sin(θ)/2)
then
View attachment 2207
View attachment 2208..............substitute sin(θ)=y/r , cos(θ) =x/r , and r=sqrt(x^2+y^2)
View attachment 2209......simplify
x*sqrt(2)+y*sqrt(2)=12
y = 6sqrt(2) - x
.