- Joined
- Jun 27, 2021
- Messages
- 5,386
- Reaction score
- 422
Question 12
r = 4 sin 2θ
r = 4 (2 sin θ cos θ)
r = 8 sin θ cos θ
r • r = 8 r sin θ cos θ
r^2 = 8y cos θ
x^2 + y^2 = 8y cos θ
Stuck here. How do I remove cos θ?
Apply the formula
sin(2α)=2sin(α)cos(α) with α=θ: r=8sin(θ)cos(θ).
From x=rcos(θ) and y=rsin(θ), we have that cos(θ)= x/r, sin(θ)= y/r, tan(θ)= y/x, and cot(θ)= x/y.
the input now takes the form
r=8xy/r^2
r^3=8xy
r^3-8xy=0
In rectangular coordinates, r= x^2+y^2
(x^2+y^2)^3-8xy=0
r = sqrt(x^2 + y^2)
here r= x^2+y^2 made typo, should be , r^2= x^2+y^2 and when you solve it for r you get r = sqrt(x^2 + y^2)