- Joined
- Jun 27, 2021
- Messages
- 5,386
- Reaction score
- 422
Solve for x.
sqrt{2 - sqrt{x + 2}} = x
Hint: square root within a square root.
sqrt{2 - sqrt{x + 2}} = x
Hint: square root within a square root.
sqrt(2 - sqrt(x + 2)) = x...........square both sides
2 - sqrt(x + 2) = x^2
2 - x^2=sqrt(x + 2) .........square both sides
(2 - x^2)^2=x + 2
x^4 - 4x^2 + 4=x + 2
x^4 - 4x^2 + 4-x - 2=0
x^4 - 4x^2 -x + 2=0
(x - 2) (x + 1) (x^2 + x - 1) = 0
solutions:
x=2
x=-1
x^2 + x - 1 = 0=>x = sqrt(5)/2 - 1/2 or x = -1/2 - sqrt(5)/2
verify solutions:
x=2
sqrt(2 - sqrt(x + 2)) =2 ->false
x=-1
sqrt(2 - sqrt(x + 2)) =-1 ->false
x=sqrt(5)/2 - 1/2
sqrt(2 - sqrt(sqrt(5)/2 - 1/2 + 2)) =sqrt(5)/2 - 1/2 =>true
x = -1/2 - sqrt(5)/2
sqrt(2 - sqrt(-1/2 - sqrt(5)/2 + 2)) =-1/2 - sqrt(5)/2 =>false
solution that works:
x = sqrt(5)/2 - 1/2