Find Angle Between Two Vectors...2

Joined
Jun 27, 2021
Messages
5,386
Reaction score
422
Section 6.4

Find the angle theta (in radians) between the two vectors.

Please, work out (38) in step by step fashion. I will then do all odd numbers when time allows and check the answers for myself in the back of the book. Thank you.

Screenshot_20220206-120055_Samsung Notes.jpg
 
38.

The angle theta between two vectors u and v is given by the formula of the dot product:

u *v =|u|*|v|cos(θ) where |u| and |v| are the absolute values/magnitudes

given:

u=cos(pi/4)i +sin(pi/4)j
u=(1/sqrt(2))i+(1/sqrt(2))j
u=(sqrt(2)/2)i+(sqrt(2)/2)j

v=cos(5pi/4)i +sin(5pi/4)j
v=-(1/sqrt(2))i -(1/sqrt(2))j
v= -(sqrt(2)/2)i-(sqrt(2)/2)j

u*v=- (j + i)^2/2
u*v=- (j ^2+2ij+ i^2)/2
u*v=- j ^2/2+2ij/2+ i^2/2
u*v=- j ^2/2+ij/+ i^2/2

By the dot product, i*i=j*j=1 and i*j=0

u*v=(sqrt(2)/2)*(-(sqrt(2)/2))i^2 +(sqrt(2)/2)(-(sqrt(2)/2)j^2

u*v=(-1/2)*1+ (-1/2)*1

u*v=-1

the magnitude of a vector u and v is:

u=sqrt(((sqrt(2)/2))^2+((sqrt(2)/2))^2)=1

v=sqrt((-(sqrt(2)/2))^2+(-(sqrt(2)/2))^2)=1

.u *v =|u|*|v|*cos(θ)

cos(θ)=-1/(1*1)

cos(θ)=-1

θ= cos^-1(-1)

θ= π (result in radians)
θ=180°
 
38.

The angle theta between two vectors u and v is given by the formula of the dot product:

u *v =|u|*|v|cos(θ) where |u| and |v| are the absolute values/magnitudes

given:

u=cos(pi/4)i +sin(pi/4)j
u=(1/sqrt(2))i+(1/sqrt(2))j
u=(sqrt(2)/2)i+(sqrt(2)/2)j

v=cos(5pi/4)i +sin(5pi/4)j
v=-(1/sqrt(2))i -(1/sqrt(2))j
v= -(sqrt(2)/2)i-(sqrt(2)/2)j

u*v=- (j + i)^2/2
u*v=- (j ^2+2ij+ i^2)/2
u*v=- j ^2/2+2ij/2+ i^2/2
u*v=- j ^2/2+ij/+ i^2/2

By the dot product, i*i=j*j=1 and i*j=0

u*v=(sqrt(2)/2)*(-(sqrt(2)/2))i^2 +(sqrt(2)/2)(-(sqrt(2)/2)j^2

u*v=(-1/2)*1+ (-1/2)*1

u*v=-1

the magnitude of a vector u and v is:

u=sqrt(((sqrt(2)/2))^2+((sqrt(2)/2))^2)=1

v=sqrt((-(sqrt(2)/2))^2+(-(sqrt(2)/2))^2)=1

.u *v =|u|*|v|*cos(θ)

cos(θ)=-1/(1*1)

cos(θ)=-1

θ= cos^-1(-1)

θ= π (result in radians)
θ=180°

Thank you. I will try 37 and return here if I get stuck or my answer is wrong.
 
38.

The angle theta between two vectors u and v is given by the formula of the dot product:

u *v =|u|*|v|cos(θ) where |u| and |v| are the absolute values/magnitudes

given:

u=cos(pi/4)i +sin(pi/4)j
u=(1/sqrt(2))i+(1/sqrt(2))j
u=(sqrt(2)/2)i+(sqrt(2)/2)j

v=cos(5pi/4)i +sin(5pi/4)j
v=-(1/sqrt(2))i -(1/sqrt(2))j
v= -(sqrt(2)/2)i-(sqrt(2)/2)j

u*v=- (j + i)^2/2
u*v=- (j ^2+2ij+ i^2)/2
u*v=- j ^2/2+2ij/2+ i^2/2
u*v=- j ^2/2+ij/+ i^2/2

By the dot product, i*i=j*j=1 and i*j=0

u*v=(sqrt(2)/2)*(-(sqrt(2)/2))i^2 +(sqrt(2)/2)(-(sqrt(2)/2)j^2

u*v=(-1/2)*1+ (-1/2)*1

u*v=-1

the magnitude of a vector u and v is:

u=sqrt(((sqrt(2)/2))^2+((sqrt(2)/2))^2)=1

v=sqrt((-(sqrt(2)/2))^2+(-(sqrt(2)/2))^2)=1

.u *v =|u|*|v|*cos(θ)

cos(θ)=-1/(1*1)

cos(θ)=-1

θ= cos^-1(-1)

θ= π (result in radians)
θ=180°

Here is my work for 33.

IMG_20220211_112359.jpg


IMG_20220211_112411.jpg


IMG_20220211_112423.jpg


IMG_20220211_112655.jpg
 
38.

The angle theta between two vectors u and v is given by the formula of the dot product:

u *v =|u|*|v|cos(θ) where |u| and |v| are the absolute values/magnitudes

given:

u=cos(pi/4)i +sin(pi/4)j
u=(1/sqrt(2))i+(1/sqrt(2))j
u=(sqrt(2)/2)i+(sqrt(2)/2)j

v=cos(5pi/4)i +sin(5pi/4)j
v=-(1/sqrt(2))i -(1/sqrt(2))j
v= -(sqrt(2)/2)i-(sqrt(2)/2)j

u*v=- (j + i)^2/2
u*v=- (j ^2+2ij+ i^2)/2
u*v=- j ^2/2+2ij/2+ i^2/2
u*v=- j ^2/2+ij/+ i^2/2

By the dot product, i*i=j*j=1 and i*j=0

u*v=(sqrt(2)/2)*(-(sqrt(2)/2))i^2 +(sqrt(2)/2)(-(sqrt(2)/2)j^2

u*v=(-1/2)*1+ (-1/2)*1

u*v=-1

the magnitude of a vector u and v is:

u=sqrt(((sqrt(2)/2))^2+((sqrt(2)/2))^2)=1

v=sqrt((-(sqrt(2)/2))^2+(-(sqrt(2)/2))^2)=1

.u *v =|u|*|v|*cos(θ)

cos(θ)=-1/(1*1)

cos(θ)=-1

θ= cos^-1(-1)

θ= π (result in radians)
θ=180°

Here is my work for 35.

IMG_20220211_112715.jpg


IMG_20220211_112814.jpg


IMG_20220211_112822.jpg


IMG_20220211_112832.jpg


IMG_20220211_112842.jpg
 
38.

The angle theta between two vectors u and v is given by the formula of the dot product:

u *v =|u|*|v|cos(θ) where |u| and |v| are the absolute values/magnitudes

given:

u=cos(pi/4)i +sin(pi/4)j
u=(1/sqrt(2))i+(1/sqrt(2))j
u=(sqrt(2)/2)i+(sqrt(2)/2)j

v=cos(5pi/4)i +sin(5pi/4)j
v=-(1/sqrt(2))i -(1/sqrt(2))j
v= -(sqrt(2)/2)i-(sqrt(2)/2)j

u*v=- (j + i)^2/2
u*v=- (j ^2+2ij+ i^2)/2
u*v=- j ^2/2+2ij/2+ i^2/2
u*v=- j ^2/2+ij/+ i^2/2

By the dot product, i*i=j*j=1 and i*j=0

u*v=(sqrt(2)/2)*(-(sqrt(2)/2))i^2 +(sqrt(2)/2)(-(sqrt(2)/2)j^2

u*v=(-1/2)*1+ (-1/2)*1

u*v=-1

the magnitude of a vector u and v is:

u=sqrt(((sqrt(2)/2))^2+((sqrt(2)/2))^2)=1

v=sqrt((-(sqrt(2)/2))^2+(-(sqrt(2)/2))^2)=1

.u *v =|u|*|v|*cos(θ)

cos(θ)=-1/(1*1)

cos(θ)=-1

θ= cos^-1(-1)

θ= π (result in radians)
θ=180°

Here is my work for 37.

IMG_20220211_112858.jpg


IMG_20220211_112949.jpg


IMG_20220211_112956.jpg
 
33. correct
35. correct
37. ->you put 38 but actually did 37 and it is correct

Thank you. I see that there's no getting around posting my work here. Textbooks are not always the best companion for learning, or in my case, revisiting a course taken in the Spring 1993 semester at Lehman College.
 


Write your reply...

Members online

No members online now.

Forum statistics

Threads
2,529
Messages
9,858
Members
696
Latest member
fairdistribution
Back
Top