Find Limit of f(x)

Joined
Jun 27, 2021
Messages
5,386
Reaction score
422
Calculus
Section 1.6

Can you do 59 as a guide for me to do 60?

Screenshot_20220410-202935_Samsung Notes.jpg
 
lim((f(x)-8)/(x-1), x->1)=10, find lim(f(x)) as x->1

use quotient rule

lim((f(x)-8), x->1)/lim(x-1, x->1)=10

lim((f(x)-8), x->1)=10*lim(x-1, x->1)..........for left side use difference rule

lim((f(x), x->1)- lim(8, x->1)=10*lim(x-1, x->1)............lim(8, x->1)=8

lim((f(x), x->1)-8=10*lim(x-1, x->1)......lim(x-1, x->1)=0

lim((f(x), x->1)=10*0+8

lim((f(x), x->1)=8
 
lim((f(x)-8)/(x-1), x->1)=10, find lim(f(x)) as x->1

use quotient rule

lim((f(x)-8), x->1)/lim(x-1, x->1)=10

lim((f(x)-8), x->1)=10*lim(x-1, x->1)..........for left side use difference rule

lim((f(x), x->1)- lim(8, x->1)=10*lim(x-1, x->1)............lim(8, x->1)=8

lim((f(x), x->1)-8=10*lim(x-1, x->1)......lim(x-1, x->1)=0

lim((f(x), x->1)=10*0+8

lim((f(x), x->1)=8

I will try 60 on my day off.
 
lim((f(x)-8)/(x-1), x->1)=10, find lim(f(x)) as x->1

use quotient rule

lim((f(x)-8), x->1)/lim(x-1, x->1)=10

lim((f(x)-8), x->1)=10*lim(x-1, x->1)..........for left side use difference rule

lim((f(x), x->1)- lim(8, x->1)=10*lim(x-1, x->1)............lim(8, x->1)=8

lim((f(x), x->1)-8=10*lim(x-1, x->1)......lim(x-1, x->1)=0

lim((f(x), x->1)=10*0+8

lim((f(x), x->1)=8

I tried doing 60 a few times. I give up. My work is not even close to what you did on 59. I am lost. Can you please do 60?
 
if lim (f(x)/x^2)=5 as x->0, find following limits

use quotient rule

so, lim (f(x))/lim(x^2)=5 as x->0

a.

lim (f(x))/lim(x^2)=5

lim (f(x))=5 lim(x^2) .....as x->0

lim (f(x))=5 lim(0^2) =5*0=0


b.

lim (f(x)/x) as x->0

lim (f(x)/x)=lim (f(x))/lim(x) ...as x->0

substitute lim (f(x))=0...as x->0

lim (f(x))/lim(x) ...as x->0=lim 0/lim(0)=0

 
if lim (f(x)/x^2)=5 as x->0, find following limits

use quotient rule

so, lim (f(x))/lim(x^2)=5 as x->0

a.

lim (f(x))/lim(x^2)=5

lim (f(x))=5 lim(x^2) .....as x->0

lim (f(x))=5 lim(0^2) =5*0=0


b.

lim (f(x)/x) as x->0

lim (f(x)/x)=lim (f(x))/lim(x) ...as x->0

substitute lim (f(x))=0...as x->0

lim (f(x))/lim(x) ...as x->0=lim 0/lim(0)=0

Very good. Visit the link below and tell me if my work is correct.

Limit of Greatest Integer Function...1
 

Members online

No members online now.

Trending content

Forum statistics

Threads
2,531
Messages
9,860
Members
697
Latest member
lemon in icewine
Back
Top