Reply to thread

F1=<10,0> and F2=5<cos(theta), sin(theta)>


a.

find ||F1+F2|| as function of theta


First we find the component of F1+F2


F1+F2=<10,0>+5<cos(theta), sin(theta)>

F1+F2=<10,0>+<5cos(theta), 5sin(theta)>

F1+F2=<10+5cos(theta),0+ 5sin(theta)>

F1+F2=<10+5cos(theta), 5sin(theta)>


Now, for magnitude of  F1+F2


||F1+F2|sqrt((10+5cos(theta))^2+(5sin(theta))^2 )


||F1+F2|sqrt(100+100cos(theta)+25cos^2(theta)+25sin^2(theta) )

||F1+F2|sqrt(100+100cos(theta)+25(cos^2(theta)+sin^2(theta) ))...using cos^2(theta)+sin^2(theta)=1


||F1+F2||=sqrt(100+100cos(theta)+25)


||F1+F2||=sqrt(125+100cos(theta))


||F1+F2||=sqrt(25(5+4cos(theta)))


||F1+F2||=5sqrt(5+4cos(theta))


b.


Given

F1=<10,0>

F2=5<cos(theta), sin(theta)>

We have to Use a graphing utility to graph the function in part for a. for 0 <=theta <=2pi.

The graphing utility to graph the function is shown below.



c.

form part b  range for  0<=θ<2 π

.

||F1+F2||=5sqrt(5+4cos(θ))


From here we get the maximum value of θ at θ = 0 °

||F1+F2||=5sqrt(5+4cos(0))

||F1+F2||=5sqrt(5+4*1)

||F1+F2||=5sqrt(9)

||F1+F2||=5*3

||F1+F2||=15


Now we get the minimum value of θ at θ = pi


||F1+F2||=5sqrt(5+4cos(pi))

||F1+F2||=5sqrt(5+4(-1))

||F1+F2||=5sqrt(5-4)

||F1+F2||=5sqrt(1)

||F1+F2||=5


The range of the function for  5< =θ<15 .


d. The magnitude of a vector is always a positive number or zero it cannot be a negative number. A vector is a quantity described by a magnitude and a direction. The magnitude is always positive or zero. A  negative sign in front of a vector indicates the same magnitude but in the opposite direction. The negative sign is part of the direction rather than the magnitude.


Members online

No members online now.

Forum statistics

Threads
2,530
Messages
9,859
Members
696
Latest member
fairdistribution
Back
Top