- Joined
- Jun 27, 2021
- Messages
- 5,386
- Reaction score
- 422
Solve for x.
(6 - sqrt{35})^(x) + (6 + sqrt{35})^(x) = 142
(6 - sqrt{35})^(x) + (6 + sqrt{35})^(x) = 142
(6 - sqrt(35))^x+ (6 + sqrt(35))^x = 142
apply exponent rules
((6 + sqrt(35))^x)^-1+ (6 + sqrt(35))^x = 142
rewrite the equation with (6 + sqrt(35))^x=u
u^-1+u=142...........solve for u
1/u+u=142
(1+u^2)/u=142
1+u^2=142u
u^2-142u+1=0......using quadratic formula we get
u = 71+ 12 sqrt(35)
u = 71 - 12 sqrt(35)
substitute back u=(6+ sqrt(35))^x, solve for x
(6+ sqrt(35))^x = 71+ 12 sqrt(35)
log((6+ sqrt(35))^x )=log( 71+ 12 sqrt(35))
x*log((6+ sqrt(35) )=log( 71+ 12 sqrt(35))
x=log( 71+ 12 sqrt(35))/log((6+ sqrt(35) )
x=2
(6+ sqrt(35))^x = 71- 12 sqrt(35)
log((6+ sqrt(35))^x )=log( 71- 12 sqrt(35))
x*log((6+ sqrt(35) )=log( 71-12 sqrt(35))
x=log( 71- 12 sqrt(35))/log((6+ sqrt(35) )
x=-2