- Joined
- Apr 18, 2021
- Messages
- 2
- Reaction score
- 0
Say we want to factorize 87 .. we know that 87=3*29
We know that there exists two perfect squares that are separated by 87 units. These two squares are 169 and 256.
256-169=87. And if we take the difference of square roots of the two perfect squares (and addition) we get the prime factors
of 87. eg. sqrt(256)-sqrt(169)=3 ... sqrt(256)+sqrt(169)=29
So the problem remains of finding these two perfect squares.
13 21 23 25 27 29 31
87 100 121 144 169 196 225 256
34 57 82 109 138 169
5^2+9 6^2+21 7^2+33 8^2+45 9^2+57 10^2+69
12n+9+(n+5)^2 = n^2+22n+34
(11+2n)((floor(sqrt((9+12n)mod(11+2n)))+1))+(floor(sqrt((9+12n)mod(11+2n)))+1)*((floor(sqrt((9+12n)mod(11+2n)))+1)-1)=9+12n
According to WolframAlpha: n=5
so: 5^2+22*5+34=169
sqrt(169+87) - sqrt(169) = 3
sqrt(169+87) + sqrt(169) = 29
We know that there exists two perfect squares that are separated by 87 units. These two squares are 169 and 256.
256-169=87. And if we take the difference of square roots of the two perfect squares (and addition) we get the prime factors
of 87. eg. sqrt(256)-sqrt(169)=3 ... sqrt(256)+sqrt(169)=29
So the problem remains of finding these two perfect squares.
13 21 23 25 27 29 31
87 100 121 144 169 196 225 256
34 57 82 109 138 169
5^2+9 6^2+21 7^2+33 8^2+45 9^2+57 10^2+69
12n+9+(n+5)^2 = n^2+22n+34
(11+2n)((floor(sqrt((9+12n)mod(11+2n)))+1))+(floor(sqrt((9+12n)mod(11+2n)))+1)*((floor(sqrt((9+12n)mod(11+2n)))+1)-1)=9+12n
According to WolframAlpha: n=5
so: 5^2+22*5+34=169
sqrt(169+87) - sqrt(169) = 3
sqrt(169+87) + sqrt(169) = 29