Log Prove

log(b,((sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)))=2log(b(sqrt(3)+sqrt(2))

log(b,((sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)))

=>(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))........rationalize, multiply (sqrt(3)+sqrt(2))

=((sqrt(3)+sqrt(2))((sqrt(3)+sqrt(2))))/((sqrt(3) - sqrt(2))(sqrt(3)+sqrt(2)))

=(((sqrt(3)+sqrt(2))^2)/((sqrt(3) )^2- (sqrt(2))^2))

=((sqrt(3)+sqrt(2))^2)/(3- 2)

=((sqrt(3)+sqrt(2))^2)/1

=(sqrt(3)+sqrt(2))^2

then

log(b,(sqrt(3)+sqrt(2))^2 =2log(b,(sqrt(3)+sqrt(2))->proven
 
log(b,((sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)))=2log(b(sqrt(3)+sqrt(2))

log(b,((sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)))

=>(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))........rationalize, multiply (sqrt(3)+sqrt(2))

=((sqrt(3)+sqrt(2))((sqrt(3)+sqrt(2))))/((sqrt(3) - sqrt(2))(sqrt(3)+sqrt(2)))

=(((sqrt(3)+sqrt(2))^2)/((sqrt(3) )^2- (sqrt(2))^2))

=((sqrt(3)+sqrt(2))^2)/(3- 2)

=((sqrt(3)+sqrt(2))^2)/1

=(sqrt(3)+sqrt(2))^2

then

log(b,(sqrt(3)+sqrt(2))^2 =2log(b,(sqrt(3)+sqrt(2))->proven

Is it possible for you to use LaTex or write your reply on paper and then upload here for easy reading?
 
MSP74120707giceb94b2hf000050ebabi3f56b8140


manipulate left side

MSP25671c02d70hdg2974h100001284c9e1h4e5eeb7


=> rationalize,
MSP2982213cdfg9ea9afh7200000i6h0784861g2204
, multiply by
MSP226113a74dcb2iag48330000184ec5h9i105f1c4


=
MSP11222568ii699e4abgc00003c91dch7h9575029


=
MSP5702086b5f5b170dgc20000135e108b23h29dga


=
MSP398213eh51di10g7223000002abeh5459gd657ib


=
MSP279018h8i4d1a656cae500005hef2b242i7ded1e


=
MSP284618h8i4d1a656cae50000476e33chf627dabh


substitute in log

MSP38511bgi963afgece242000064a2h34250i1a63a


=
MSP55971b0e2aeb34f6dd7g000035hf2a62i2i09a6c
->proven

1. Is this LaTex?

2. If not LaTex, what app did you use to type this reply?

3. Reply using this style of writing from now on. It's a lot easier to read and understand.
 


Write your reply...

Members online

No members online now.

Forum statistics

Threads
2,529
Messages
9,858
Members
696
Latest member
fairdistribution
Back
Top