Perpendicular Segments

use distance formula to find d1 and d2

d1=sqrt((1-0)^2)+(m1-0)^2)
d1=sqrt(1+m1^2)

d2=sqrt((1-0)^2)+(m2-0)^2)
d2=sqrt(1+m2^2)

in right triangle hypothenuse c is equal to distance between (1,m1) and (1,m2)

c=sqrt((1-1)^2)+(m1-m2)^2)
c=sqrt((m1-m2)^2)
c=m1-m2

since c^2=d1^2+d2^2 we have
(m1-m2 )^2=(sqrt(1+m1^2))^2+(sqrt(1+m2^2))^2
(m1-m2 )^2=1+m1^2+1+m2^2
m1^2-m1*m2+m2^2=m1^2+m2^2+2.........simplify
-m1*m2=2......multiply by -1
m1*m2=-2..........solve for m1
m1=-2/m2-> shows relationship between m1 and m2
 
use distance formula to find d1 and d2

d1=sqrt((1-0)^2)+(m1-0)^2)
d1=sqrt(1+m1^2)

d2=sqrt((1-0)^2)+(m2-0)^2)
d2=sqrt(1+m2^2)

in right triangle hypothenuse c is equal to distance between (1,m1) and (1,m2)

c=sqrt((1-1)^2)+(m1-m2)^2)
c=sqrt((m1-m2)^2)
c=m1-m2

since c^2=d1^2+d2^2 we have
(m1-m2 )^2=(sqrt(1+m1^2))^2+(sqrt(1+m2^2))^2
(m1-m2 )^2=1+m1^2+1+m2^2
m1^2-m1*m2+m2^2=m1^2+m2^2+2.........simplify
-m1*m2=2......multiply by -1
m1*m2=-2..........solve for m1
m1=-2/m2-> shows relationship between m1 and m2

Another nice, informative reply.
 


Write your reply...

Members online

No members online now.

Forum statistics

Threads
2,529
Messages
9,858
Members
696
Latest member
fairdistribution
Back
Top