f(x)=(2x^3-x^2-2x+1)/(x^2+3x+2)
a.
domain
exclude values of x that make x^2+3x+2=0 which are x=-2 and x=-1
then domain is all real numbers
x<-2 or -2<x<-1 or x>-1
interval notation:
(-infinity , -2 ) U (-2, -1 ) U (-1, infinity )
b.
set f(x)=0 to find x intercepts
0=(2x^3-x^2-2x+1)/(x^2+3x+2)
((x - 1) (2 x - 1))/(x + 2) = 0
will be 0 only if 0=(x - 1) (2 x - 1)
and it is
=> x=-1, x=1/2
x intercepts: ( 1/2,0), (1,0)
set x=0 to find y intercepts
y=(2*0^3-0^2-2*0+1)/(0^2+3*0+2) =1/2
y intercept

0,1/2)
c. asymptotes
vertical: x=-2,
horizontal:
A rational function has a slant asymptote if the degree of a numerator polynomial is 1 more than the degree of the denominator polynomial.
f(x)=(2x^3-x^2-2x+1)/(x^2+3x+2) use long division
2x^3 - x^2 - 2 x + 1 = ((2 x - 7))*(x^2 + 3 x + 2) + (15 x + 15)
so, quotient is 2 x - 7
and horizontal asymptote is: y=2x-7 (slant )
d.
plot additional points
x | f(x)
-3| -7 ..........point (-3,-7)
-1| 0..........point (-1,0)
0| 1/2 ........point (0,1/2)
1| 0 .........point (1,0)
2| 9/8 .......point (2,9/8)
you can find more points if you want , then draw a graph with slant asymptote y=2x-7
View attachment 514