To verify the equality
, we can simplify both sides of the equation:
Left-hand side:
\[ (-\frac{13}{24})\left[(-\frac{12}{7}) \times \frac{31}{32}\right] \]
First, let's simplify the expression inside the brackets:
\[ (-\frac{12}{7}) \times \frac{31}{32} = -\frac{12}{7} \times \frac{31}{32} \]
\[ = -\frac{372}{224} \]
\[ = -\frac{93}{56} \]
Now, substitute this back into the original expression:
\[ (-\frac{13}{24}) \times (-\frac{93}{56}) \]
\[ = \frac{13 \times 93}{24 \times 56} \]
\[ = \frac{1209}{1344} \]
Right-hand side:
\[ [(-\frac{13}{24}) \times (-\frac{12}{7})] \times \frac{31}{32} \]
\[ = \left[(-\frac{13}{24}) \times (-\frac{12}{7})\right] \times \frac{31}{32} \]
\[ = \frac{13 \times 12}{24 \times 7} \times \frac{31}{32} \]
\[ = \frac{156}{168} \times \frac{31}{32} \]
\[ = \frac{156 \times 31}{168 \times 32} \]
\[ = \frac{4836}{5376} \]
After simplification, both sides indeed yield the same result:
\[ \frac{1209}{1344} = \frac{4836}{5376} \]
Thus, the equality holds true.