Remainder Theorem & Synthetic Division...1

Joined
Jun 27, 2021
Messages
5,386
Reaction score
422
Section 2.3
Question 52 (a)

Can you do 52 (a) as notes for me to try a few more on my own?


20210910_210157.jpg
 
g(x)=2x^6+3x^4-x^2+3
g(2) =>x=2

factor will be (x-2)

........(2x^5+4x^4+11x^3+22x^2+43x +86
(x-2)|2x^6+0*x^5+3x^4+0*x^3-x^2+0*x+3
........2x^6-4x^5
.................4x^5+3x^4
.................4x^5-8x^4
..........................11x^4+0*x^3
..........................11x^4-22x^3
.....................................22x^3-x^2
.....................................22x^3-44x^2
.................................................43x^2+0*x
.................................................43x^2-86x
.............................................................86x+3
.............................................................86x-172
....................................................................172->reminder

which proves that g(2) =172
 
g(x)=2x^6+3x^4-x^2+3
g(2) =>x=2

factor will be (x-2)

........(2x^5+4x^4+11x^3+22x^2+43x +86
(x-2)|2x^6+0*x^5+3x^4+0*x^3-x^2+0*x+3
........2x^6-4x^5
.................4x^5+3x^4
.................4x^5-8x^4
..........................11x^4+0*x^3
..........................11x^4-22x^3
.....................................22x^3-x^2
.....................................22x^3-44x^2
.................................................43x^2+0*x
.................................................43x^2-86x
.............................................................86x+3
.............................................................86x-172
....................................................................172->reminder

which proves that g(2) =172

It's easier to read long division on paper or when done on the board. Thanks anyway. Moving on.
 


Write your reply...

Members online

No members online now.

Forum statistics

Threads
2,530
Messages
9,859
Members
696
Latest member
fairdistribution
Back
Top