Solve for x

x^2 = 2^x

prepare for Lambert form xe^(-(ln(2)x)/2)=1

rewrite the equation with -(ln(2)x)/2)=u and x=-(2u)/ln(2)

-(2u)/ln(2)*e^u=1

rewrite -(2u)/ln(2)*e^u=1 in Lambert form (e^u)u=-ln(2)/2

solve e^u=-ln(2)/2=> u=-2ln(2), u=-1*ln(2)

substitute back u=-(ln(2)x)/2), solve for x

-2ln(2)=-(ln(2)x)/2
-4ln(2)=-ln(2)x
-4=-x
x=4

-1*ln(2)=-(ln(2)x)/2
-2*ln(2)=-ln(2)x
-2=-x
x=2
 
x^2 = 2^x

prepare for Lambert form xe^(-(ln(2)x)/2)=1

rewrite the equation with -(ln(2)x)/2)=u and x=-(2u)/ln(2)

-(2u)/ln(2)*e^u=1

rewrite -(2u)/ln(2)*e^u=1 in Lambert form (e^u)u=-ln(2)/2

solve e^u=-ln(2)/2=> u=-2ln(2), u=-1*ln(2)

substitute back u=-(ln(2)x)/2), solve for x

-2ln(2)=-(ln(2)x)/2
-4ln(2)=-ln(2)x
-4=-x
x=4

-1*ln(2)=-(ln(2)x)/2
-2*ln(2)=-ln(2)x
-2=-x
x=2

What is the Lambert form? This is beyond precalculus, right?
 


Write your reply...

Members online

No members online now.

Forum statistics

Threads
2,529
Messages
9,858
Members
696
Latest member
fairdistribution
Back
Top