System of Equations...2

ax +(1-a)y=1.........eq.1
(1-a)x+y=0........eq.2
------------------------------------

(1-a)x+y=0........eq.2, solve for y
y=-(1-a)x........eq.2a

substitute in eq.1

ax +(1-a)(-(1-a)x)=1.........eq.1, solve for x

ax +(1-a)(-(1-a)x)=1
ax -(a - 1)^2 x=1
(a -(a - 1)^2) x=1
(-a^2 + 3a - 1) x=1
x=1/(-a^2 + 3a - 1)

go t eq.2s and substitute x

y=-(1-a)(1/(-a^2 + 3a - 1) )........eq.2a

y=(1 - a)/(a^2 - 3 a + 1)

 
ax +(1-a)y=1.........eq.1
(1-a)x+y=0........eq.2
------------------------------------

(1-a)x+y=0........eq.2, solve for y
y=-(1-a)x........eq.2a

substitute in eq.1

ax +(1-a)(-(1-a)x)=1.........eq.1, solve for x

ax +(1-a)(-(1-a)x)=1
ax -(a - 1)^2 x=1
(a -(a - 1)^2) x=1
(-a^2 + 3a - 1) x=1
x=1/(-a^2 + 3a - 1)

go t eq.2s and substitute x

y=-(1-a)(1/(-a^2 + 3a - 1) )........eq.2a

y=(1 - a)/(a^2 - 3 a + 1)

Is there anything in math land that you cannot do? Simply amazing.
 


Write your reply...

Members online

No members online now.

Forum statistics

Threads
2,529
Messages
9,858
Members
696
Latest member
fairdistribution
Back
Top