- Joined
- Jun 27, 2021
- Messages
- 5,386
- Reaction score
- 422
Solve for x and y.
sqrt{x} + y = 7
x + sqrt{y} = 11
sqrt{x} + y = 7
x + sqrt{y} = 11
sqrt(x)+ y = 7..............1)
x + sqrt(y) = 11...........2)
-------------------------------------isolate sqrt
sqrt(x) = 7-y..............1)
sqrt(y) = 11-x...........2)
--------------------------------square both sides
x = (7-y)^2..............1)
y = (11-x)^2...........2)
----------------------------------------
x = y^2 - 14 y + 49..............1)
y = x^2 - 22 x + 121...........2)
-------------------------------------
substitute x from eq. 1)
y = (y^2 - 14 y + 49)^2 - 22 (y^2 - 14 y + 49) + 121...........2), solve for y
0= y^4 - 28 y^3 + 272 y^2 - 1064 y + 1444 -y
y^4 - 28 y^3 + 272 y^2 - 1065 y + 1444=0....factor
(y - 4) (y^3 - 24 y^2 + 176 y - 361) = 0
one solution: y=4
y^3 - 24 y^2 + 176 y - 361= 0 roots are
y≈3.4156
y≈9.8051
y≈10.779
we dont use approximate values
so, solution is x=9, y=4
intersection point: (9,4)
![]()