Evaluate the Integral

Joined
Nov 27, 2021
Messages
2
Reaction score
0
i need help
 

Attachments

  • Screenshot (203).png
    Screenshot (203).png
    3.3 KB · Views: 35
int(sin(x)*ln(1+sin(x))dx) (I am using int() instead symbol ∫)

apply integration by parts:

Using the product rule, we have that

int(udv)=uv-int(vdu)

let u=ln(1+sin(x)) and v=sin(x)dx

Then du=(ln(sin(x)+1))′dx=(cos(x)/(sin(x)+1))dx
and

v=int(sin(x)dx)=-cos(x)

The integral can be rewritten as

int(ln(sin(x)+1)sin(x)dx)
=(ln(sin(x)+1)*(-cos(x))-int(-cos(x))*(cos(x)/(sin(x)+1))dx)
=(-ln(sin(x)+1)cos(x)-int((-cos^2(x)/(sin(x)+1))dx)

Rewrite the cosine in terms of the sine, rewrite the numerator further, use the formula for difference of squares, and simplify:

-ln(sin(x)+1)cos(x)- int((-cos^2(x)/(sin(x)+1))dx)
=-ln(sin(x)+1)cos(x)- int((sin(x)-1)dx)

Integrate term by term:

-ln(sin(x)+1)cos(x)- int((sin(x)-1)dx)
=-ln(sin(x)+1)cos(x)-(-int(1dx)+int(sin(x)dx)

Apply the constant rule int(c)dx=cx with c=1:

-ln(sin(x)+1)cos(x)-int(sin(x)dx)+int(1dx)
=-ln(sin(x)+1)cos(x)-int(sin(x)dx)+x

The integral of the sine is int(sin(x)dx)=-cos(x):

x-ln(sin(x)+1)cos(x)-int(sin(x)dx)=x-ln(sin(x)+1)cos(x)-(-cos(x))

Therefore,

int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)

Add the constant of integration:

int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)+C
Answer:
int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)+C
 
int(sin(x)*ln(1+sin(x))dx) (I am using int() instead symbol ∫)

apply integration by parts:

Using the product rule, we have that

int(udv)=uv-int(vdu)

let u=ln(1+sin(x)) and v=sin(x)dx

Then du=(ln(sin(x)+1))′dx=(cos(x)/(sin(x)+1))dx
and

v=int(sin(x)dx)=-cos(x)

The integral can be rewritten as

int(ln(sin(x)+1)sin(x)dx)
=(ln(sin(x)+1)*(-cos(x))-int(-cos(x))*(cos(x)/(sin(x)+1))dx)
=(-ln(sin(x)+1)cos(x)-int((-cos^2(x)/(sin(x)+1))dx)

Rewrite the cosine in terms of the sine, rewrite the numerator further, use the formula for difference of squares, and simplify:

-ln(sin(x)+1)cos(x)- int((-cos^2(x)/(sin(x)+1))dx)
=-ln(sin(x)+1)cos(x)- int((sin(x)-1)dx)

Integrate term by term:

-ln(sin(x)+1)cos(x)- int((sin(x)-1)dx)
=-ln(sin(x)+1)cos(x)-(-int(1dx)+int(sin(x)dx)

Apply the constant rule int(c)dx=cx with c=1:

-ln(sin(x)+1)cos(x)-int(sin(x)dx)+int(1dx)
=-ln(sin(x)+1)cos(x)-int(sin(x)dx)+x

The integral of the sine is int(sin(x)dx)=-cos(x):

x-ln(sin(x)+1)cos(x)-int(sin(x)dx)=x-ln(sin(x)+1)cos(x)-(-cos(x))

Therefore,

int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)

Add the constant of integration:

int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)+C
Answer:
int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)+C
THANK YOU SO MUCH
 
int(sin(x)*ln(1+sin(x))dx) (I am using int() instead symbol ∫)

apply integration by parts:

Using the product rule, we have that

int(udv)=uv-int(vdu)

let u=ln(1+sin(x)) and v=sin(x)dx

Then du=(ln(sin(x)+1))′dx=(cos(x)/(sin(x)+1))dx
and

v=int(sin(x)dx)=-cos(x)

The integral can be rewritten as

int(ln(sin(x)+1)sin(x)dx)
=(ln(sin(x)+1)*(-cos(x))-int(-cos(x))*(cos(x)/(sin(x)+1))dx)
=(-ln(sin(x)+1)cos(x)-int((-cos^2(x)/(sin(x)+1))dx)

Rewrite the cosine in terms of the sine, rewrite the numerator further, use the formula for difference of squares, and simplify:

-ln(sin(x)+1)cos(x)- int((-cos^2(x)/(sin(x)+1))dx)
=-ln(sin(x)+1)cos(x)- int((sin(x)-1)dx)

Integrate term by term:

-ln(sin(x)+1)cos(x)- int((sin(x)-1)dx)
=-ln(sin(x)+1)cos(x)-(-int(1dx)+int(sin(x)dx)

Apply the constant rule int(c)dx=cx with c=1:

-ln(sin(x)+1)cos(x)-int(sin(x)dx)+int(1dx)
=-ln(sin(x)+1)cos(x)-int(sin(x)dx)+x

The integral of the sine is int(sin(x)dx)=-cos(x):

x-ln(sin(x)+1)cos(x)-int(sin(x)dx)=x-ln(sin(x)+1)cos(x)-(-cos(x))

Therefore,

int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)

Add the constant of integration:

int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)+C
Answer:
int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)+C

Can you please use the math symbols method for easy reading? You know, the wolfram stuff.
 

Members online

No members online now.

Forum statistics

Threads
2,523
Messages
9,840
Members
695
Latest member
LWM
Back
Top