Reply to thread

int(sin(x)*ln(1+sin(x))dx)    (I am using int() instead symbol  ∫)


apply integration by parts:


Using the product rule, we have that


 int(udv)=uv-int(vdu)


let u=ln(1+sin(x)) and v=sin(x)dx


Then du=(ln(sin(x)+1))′dx=(cos(x)/(sin(x)+1))dx

and


v=int(sin(x)dx)=-cos(x)


The integral can be rewritten as


int(ln(sin(x)+1)sin(x)dx)

=(ln(sin(x)+1)*(-cos(x))-int(-cos(x))*(cos(x)/(sin(x)+1))dx)

=(-ln(sin(x)+1)cos(x)-int((-cos^2(x)/(sin(x)+1))dx)


Rewrite the cosine in terms of the sine, rewrite the numerator further, use the formula for difference of squares, and simplify:


-ln(sin(x)+1)cos(x)- int((-cos^2(x)/(sin(x)+1))dx)

=-ln(sin(x)+1)cos(x)- int((sin(x)-1)dx)


Integrate term by term:


-ln(sin(x)+1)cos(x)- int((sin(x)-1)dx)

=-ln(sin(x)+1)cos(x)-(-int(1dx)+int(sin(x)dx)


Apply the constant rule int(c)dx=cx with c=1:


-ln(sin(x)+1)cos(x)-int(sin(x)dx)+int(1dx)

=-ln(sin(x)+1)cos(x)-int(sin(x)dx)+x


The integral of the sine is int(sin(x)dx)=-cos(x):


x-ln(sin(x)+1)cos(x)-int(sin(x)dx)=x-ln(sin(x)+1)cos(x)-(-cos(x))


Therefore,


int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)


Add the constant of integration:


int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)+C

Answer: 

int(ln(sin(x)+1)sin(x)dx)=x-ln(sin(x)+1)cos(x)+cos(x)+C


Members online

No members online now.

Forum statistics

Threads
2,530
Messages
9,859
Members
696
Latest member
fairdistribution
Back
Top