- Joined
- Nov 3, 2024
- Messages
- 2
- Reaction score
- 0
I have approximated Goldbach's Problem (that all even numbers above 2 can be constructed with 2 primes) for a sequence from 4 to 100 using brute force and ignorance. Jokes aside, I used the Sieve of Eratosthenes and wrote down the sums in a Word document attached below. In addition, I decided to plot the prime sums on two planes. The first plots formed an exponential curve. For the second plots, I took the values of the plots and plotted them as isolated points on the Y-axis, connecting them and smoothing the lines, forming bell curves.
2+2 =4
3+3 =6
5+3=8
5+5=10
5+7=12
7+7=14
13+3=16
13+5=18
17+3=20
19+3=22
19+5=24
23+3=26
25+3=28
25+5=30
29+3=32
29+5=34
29+7=36
35+3=38
37+3=40
37+5=42
37+7=44
43+3=46
43+5=48
47+3=50
49+3=52
49+5=54
49+7=56
53+5=58
55+5=60
59+3=62
59+5=64
59+7=66
65+3=68
65+5=70
65+7=72
71+3=74
73+3=76
73+5=78
73+7=80
79+3=82
79+5=84
79+7=86
83+5=88
83+7=90
89+3=92
91+3=94
91+5=96
91+7=98
97+3=100
2+2 =4
3+3 =6
5+3=8
5+5=10
5+7=12
7+7=14
13+3=16
13+5=18
17+3=20
19+3=22
19+5=24
23+3=26
25+3=28
25+5=30
29+3=32
29+5=34
29+7=36
35+3=38
37+3=40
37+5=42
37+7=44
43+3=46
43+5=48
47+3=50
49+3=52
49+5=54
49+7=56
53+5=58
55+5=60
59+3=62
59+5=64
59+7=66
65+3=68
65+5=70
65+7=72
71+3=74
73+3=76
73+5=78
73+7=80
79+3=82
79+5=84
79+7=86
83+5=88
83+7=90
89+3=92
91+3=94
91+5=96
91+7=98
97+3=100