
Apply binomial theorem:
where [tex]a=3[/tex], [tex]b=-2i[/tex]

substitute a and b, and expand
= [tex]8!/(0!(8-0)!)*3^8(-2i)^0+8!/(1!(8-1)!)3^7*(-2i)^1+8!/(2!(8-2)!)3^6(-2i)^2[/tex]
[tex]+8!/(3!(8-3)!)*3^5*(-2i)^3+8!/(4!(8-4)!)*3^4*(-2i)^4+8!/(5!(8-5)!)*3^3*(-2i)^5[/tex]
[tex]+8!/(6!(8-6)!)*3^2*(-2i)^6+ 8!/(7!(8-7)!)*3*(-2i)^7+ 8!/(8!(8-8)!)*3^0*(-2i)^8[/tex]
=[tex]6561-34992i-81648+108864i+90720-48384i-16128+3072i+256[/tex]
= [tex]-239+2856*i [/tex]