Let K be a finite field of characteristic p > 0. Show that s(x) = x^p is an automorphism in K.
It is clear in case K is a prime field, because then s(x) is just an identity. If K is not prime, s(x) is identity on its prime subfield. But how to show the automorphism of s() for the rest of the field, when it's not prime?
It is clear in case K is a prime field, because then s(x) is just an identity. If K is not prime, s(x) is identity on its prime subfield. But how to show the automorphism of s() for the rest of the field, when it's not prime?