- Joined
- Jun 27, 2021
- Messages
- 5,386
- Reaction score
- 422
Section 2.7
Question 6
Question 6
x^2 - 2x - 8 ≥ 0
Let x = -2
(-2)^2 - 2(-2) - 8 ≥ 0
4 + 4 - 8 ≥ 0
8 - 8 ≥ 0
0 ≥ 0....true statement
Let x = 0
(0)^2 -2(0) - 8 ≥ 0
0 - 8 ≥ 0
- 8 ≥ 0...false statement
Let x = -4
(-4)^2 - 2(-4) - 8 ≥ 0
16 + 8 - 8 ≥ 0
16 ≥ 0...true statement
Let x = 1
(1)^2 - 2(1) - 8 ≥ 0
1 - 2 - 8 ≥ 0
1 - 10 ≥ 0
-9 ≥ 0...false statement
There are two solutions to the inequality:
x = -2 & x = -4
If this is right, the rest are done the same way.
Yes?
Question 6
Question 6
x^2 - 2x - 8 ≥ 0
Let x = -2
(-2)^2 - 2(-2) - 8 ≥ 0
4 + 4 - 8 ≥ 0
8 - 8 ≥ 0
0 ≥ 0....true statement
Let x = 0
(0)^2 -2(0) - 8 ≥ 0
0 - 8 ≥ 0
- 8 ≥ 0...false statement
Let x = -4
(-4)^2 - 2(-4) - 8 ≥ 0
16 + 8 - 8 ≥ 0
16 ≥ 0...true statement
Let x = 1
(1)^2 - 2(1) - 8 ≥ 0
1 - 2 - 8 ≥ 0
1 - 10 ≥ 0
-9 ≥ 0...false statement
There are two solutions to the inequality:
x = -2 & x = -4
If this is right, the rest are done the same way.
Yes?