Verifying Trigonometric Identities...5

Joined
Jun 27, 2021
Messages
5,386
Reaction score
422
Section 5.2

This is part 6 not 5.

Screenshot_20211212-181456_Samsung Notes.jpg


IMG_20211212_211508.jpg


IMG_20211212_211523.jpg


IMG_20211212_211534.jpg
 
38.

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))=sec^5(x)tan^3(x)

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))

=sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))........tan(x)=sec(x)/csc(x)

=sec^6(x)(sec(x)(sec(x)/csc(x)))-sec^4(x)(sec(x)(sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x)))-sec^5(x)((sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)(sec(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)tan(x)-tan(x)))

=sec^5(x)((sec^2(x)-1)tan(x))

=sec^5(x)tan^2(x)tan(x)

=sec^5(x)tan^3(x)

42. correct
 
38.

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))=sec^5(x)tan^3(x)

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))

=sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))........tan(x)=sec(x)/csc(x)

=sec^6(x)(sec(x)(sec(x)/csc(x)))-sec^4(x)(sec(x)(sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x)))-sec^5(x)((sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)(sec(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)tan(x)-tan(x)))

=sec^5(x)((sec^2(x)-1)tan(x))

=sec^5(x)tan^2(x)tan(x)

=sec^5(x)tan^3(x)

42. correct

I had trouble with 38. When trigonometric identities have powers greater than 3, it's hard to break down the problem.

What about the link below?

Verifying Trigonometric Identities...4
 

Members online

No members online now.

Trending content

Forum statistics

Threads
2,527
Messages
9,856
Members
696
Latest member
fairdistribution
Back
Top