Verifying Trigonometric Identities...5

38.

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))=sec^5(x)tan^3(x)

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))

=sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))........tan(x)=sec(x)/csc(x)

=sec^6(x)(sec(x)(sec(x)/csc(x)))-sec^4(x)(sec(x)(sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x)))-sec^5(x)((sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)(sec(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)tan(x)-tan(x)))

=sec^5(x)((sec^2(x)-1)tan(x))

=sec^5(x)tan^2(x)tan(x)

=sec^5(x)tan^3(x)

42. correct
 
38.

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))=sec^5(x)tan^3(x)

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))

=sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))........tan(x)=sec(x)/csc(x)

=sec^6(x)(sec(x)(sec(x)/csc(x)))-sec^4(x)(sec(x)(sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x)))-sec^5(x)((sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)(sec(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)tan(x)-tan(x)))

=sec^5(x)((sec^2(x)-1)tan(x))

=sec^5(x)tan^2(x)tan(x)

=sec^5(x)tan^3(x)

42. correct

I had trouble with 38. When trigonometric identities have powers greater than 3, it's hard to break down the problem.

What about the link below?

Verifying Trigonometric Identities...4
 


Write your reply...

Members online

No members online now.

Forum statistics

Threads
2,528
Messages
9,857
Members
696
Latest member
fairdistribution
Back
Top