Verifying Trigonometric Identities...5

Joined
Jun 27, 2021
Messages
5,386
Reaction score
422
Section 5.2

This is part 6 not 5.

Screenshot_20211212-181456_Samsung Notes.jpg


IMG_20211212_211508.jpg


IMG_20211212_211523.jpg


IMG_20211212_211534.jpg
 
38.

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))=sec^5(x)tan^3(x)

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))

=sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))........tan(x)=sec(x)/csc(x)

=sec^6(x)(sec(x)(sec(x)/csc(x)))-sec^4(x)(sec(x)(sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x)))-sec^5(x)((sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)(sec(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)tan(x)-tan(x)))

=sec^5(x)((sec^2(x)-1)tan(x))

=sec^5(x)tan^2(x)tan(x)

=sec^5(x)tan^3(x)

42. correct
 
38.

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))=sec^5(x)tan^3(x)

sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))

=sec^6(x)(sec(x)tan(x))-sec^4(x)(sec(x)tan(x))........tan(x)=sec(x)/csc(x)

=sec^6(x)(sec(x)(sec(x)/csc(x)))-sec^4(x)(sec(x)(sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x)))-sec^5(x)((sec(x)/csc(x)))

=sec^5(x)((sec^3(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)(sec(x)/csc(x))-(sec(x)/csc(x)))

=sec^5(x)((sec^2(x)tan(x)-tan(x)))

=sec^5(x)((sec^2(x)-1)tan(x))

=sec^5(x)tan^2(x)tan(x)

=sec^5(x)tan^3(x)

42. correct

I had trouble with 38. When trigonometric identities have powers greater than 3, it's hard to break down the problem.

What about the link below?

Verifying Trigonometric Identities...4
 

Members online

No members online now.

Forum statistics

Threads
2,523
Messages
9,840
Members
695
Latest member
LWM
Back
Top